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Ising machines as hardware solvers of
combinatorial optimization problems

Conventional computers have particular difficulties in
solving hard combinatorial optimization problems. Such
problems typically involve finding an optimal configu-
ration, defined by a cost function, among a very large
number of potential candidate configurations. Examples
of such problems include the travelling salesman prob-
lem, Boolean satisfiability (SAT) problems and MaxCut,
to name a few. In a practical setting, such combinatorial
optimization problems are of relevance to applications
such as planning, logistics, manufacturing, financial
portfolio management, computer vision, artificial
intelligence, machine learning, bioinformatics, drug
design and a variety of chemical and physical materials
problems'™.

In many cases, such combinatorial optimization
problems are instances of non-deterministic polynomial-
time-complete (NP-complete) problems, which repre-
sent the hardest problems within the NP class. However,
if there were a way of solving any combinatorial opti-
mization problem in the NP-complete class with an
improvement over conventional computing methods,
the impact for a large number of practical applications
would be enormous. This is because a well-known result
states that it is possible to map any problem in NP to an
NP-complete problem in polynomial time>*.

To give an example of such an NP-complete problem,
consider MaxCut (FIC. 12). One starts with a graph, in
which some of the vertices are connected via edges (that
is, links). The aim is to group the vertices into two types
such that the number of edges between the two groups
is as large as possible. MaxCut is of direct relevance to
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Abstract | Ising machines are hardware solvers that aim to find the absolute or approximate
ground states of the Ising model. The Ising model is of fundamental computational interest
because any problem in the complexity class NP can be formulated as an Ising problem with
only polynomial overhead, and thus a scalable Ising machine that outperforms existing standard
digital computers could have a huge impact for practical applications. We survey the status of
various approaches to constructing Ising machines and explain their underlying operational
principles. The types of Ising machines considered here include classical thermal annealers
based on technologies such as spintronics, optics, memristors and digital hardware accelerators;
dynamical systems solvers implemented with optics and electronics; and superconducting-circuit
quantum annealers. We compare and contrast their performance using standard metrics such

as the ground-state success probability and time-to-solution, give their scaling relations with
problem size, and discuss their strengths and weaknesses.

problems such as circuit design”®, machine learning’
and computer vision'*'!, and therefore even without
any mapping is an important problem in its own right.
A brute-force solution of MaxCut requires checking
every possible grouping of vertices; the number of such
groupings is exponential in the number of vertices. The
MaxCut problem can be recast in physics language as a
spin glass problem (FIG. 1b). To do so, a binary-valued
spin o,€ £ 1 is put on each vertex, and the interaction
constant /=1 between the connected vertices and 0
otherwise. The value of spin then encodes which group a
vertex is in, and lowers the overall energy for connected
spins i and j if they are in different groups (that is, if
0,0,=—1). This can be written as an Ising Hamiltonian

N N
Hp= Y Jio0i+ X hio;s 1)
ij=1 i=1

where N is the number of vertices or spins. A linear ;
term is included for generality, although for MaxCut it is
not required. Finding the minimum energy of equation
(1) is then equivalent to solving MaxCut. We note that
the Ising Hamiltonian (1) can be related to a quadratic
unconstrained binary optimization (QUBO) problem
under a simple change of variables o,= 1 -2x,, x,€{0,1},
and hence they can be regarded as equivalent problems.

Such optimization problems are commonly solved
on large-scale high-performance classical comput-
ers, using variants of Monte Carlo methods. With the
demise of Moore’s law, it is of interest whether alternative
methods — perhaps based on unconventional methods
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Key points

¢ Dedicated hardware solvers for the Ising model are of great interest, owing to their
many potential practical applications and the end of Moore’s law, which motivate
alternative computational approaches.

* Three main computing methods that Ising machines use are classical annealing,
quantum annealing and dynamical system evolution. A single machine can operate
on the basis of multiple computing approaches.

* Today, Ising hardware based on classical digital technologies is the best performing
for common benchmark problems. However, the performance is problem-dependent,
and alternative methods can perform well for particular classes of problems.

* For particular crafted problem instances, quantum approaches have been observed to
have superior performance over classical algorithms, motivating quantum hardware
approaches and quantum-inspired classical algorithms.

 Hybrid quantum—classical and digital-analogue algorithms are promising for future
development; they may harness the complementary advantages of both.

of computing — could be used to solve such optimi-
zation problems. Alternatives to Turing’s concept of a
deterministic digital computing machine'” have a long
history, particularly the analogue computers used for
physical simulators to investigate complex problems'.
In an analogue computer, the computation is performed
using coupled physical systems that evolve continuously
according to their physical dynamics. They are imple-
mented by analogue electronics or mechanical systems,
for example. Analogue computers were used predom-
inantly in the first half of the twentieth century when
digital computing speeds were insufficient, and they
continued to be used for several decades for specialized
applications such as flight simulation, although even
these applications have been now rendered obsolete.

Interest in the field of quantum simulation'*' in
many ways mirrors this development of classical ana-
logue computers and led to a resurgence of interest
in realizing analogue simulators of the Ising model.
Quantum simulation was in fact one of the early moti-
vations for realizing a quantum computer, based on
Richard Feynman’s conjecture that a quantum com-
puter could simulate quantum systems more efficiently
than classical computers'* — proven over a decade
later”. Although a large-scale, fault-tolerant quantum
computer is still a challenging goal, technologically,
advances in the manipulations of many-body quantum
systems using cold atoms, ions or artificial qubits poten-
tially allow for a way of simulating complex quantum
systems without requiring the full controllability of a
quantum computer'>'*'*=2, This insight led to the idea
that Ising models might be realizable using a quantum
simulation approach***, in which alternative models
of computation could be used to find the ground state
more efficiently. The first large-scale physical implemen-
tation of the quantum approach was a 128-qubit quan-
tum annealer realized by D-Wave Systems, followed
by larger-scale systems**°. Today, there are numerous
approaches, incorporating a variety of techniques (both
classical and quantum), which will be described and
compared in this Review.

In the classical realm, one of the main drawbacks of
analogue computers compared with digital computers
is that they are more susceptible to error, owing to the
analogue storage of information. Nevertheless, analogue

computers can have several advantages over digital com-
puters. First, the operation of the analogue computer is
typically highly parallelized. For a system consisting of
many coupled systems that encode information, each
system evolves in parallel, in contrast to digital comput-
ers in which parallelization is performed across multi-
ple processors. Second, there is no additional overhead
arising from the implementation of digital logic. In
many cases the time evolution of a physical system is
continuous, but in a simulation on a digital computer
it is discretized and evolved in a step-wise sequence,
which requires additional resources not required in
analogue simulation. Analogue computing is in many
ways analogous to the way the brain operates: there is
no predefined algorithm, and its operation is inherently
massively parallel and asynchronous. This ‘natural com-
puting’ approach has intrigued researchers for decades,
both from the point of view of improvements over cur-
rent computing, and for understanding how biological
systems compute.

In this Review, we survey hardware devices that
have been developed with the aim of solving the Ising
model; we call such devices Tsing machines. An impor-
tant caveat is what exactly we mean by solving the Ising
model. In many applications, suboptimal but still good
solutions are acceptable in practice; hence we consider
primarily heuristic and approximate solvers. We focus
on discussing their underlying operating principles” and
introduce the types of technologies that have been used
to implement them. The technologies include variations
of classical thermal annealers, quantum annealers, and
dynamical system-based solvers including the coher-
ent Ising machine, which have attracted interest in the
past decade. We also describe other types of computing
devices such as those based on hybrid quantum-—classical
systems. We discuss the performance of the investigated
devices, focusing on the scaling with regard to the size
of the Ising problem.

Operating principles of Ising machines

Classical thermal annealing

One of the fundamental concepts that is encountered
in connection to solving the Ising model — and opti-
mization problems in general — is annealing. Inspired
by concepts in statistical mechanics, the configurations
corresponding to the lowest values of a cost func-
tion (or energy, in the context of physics) are found
by gradually lowering the effective temperature of a
system. The basic observation is that at thermal equi-
librium, a classical physical system follows statistics
according to a Boltzmann (or Gibbs) distribution

EVI
exp (%)
p=——F

2)

where Z=3, exp(—:—"T), k, is the Boltzmann constant,
T is thermodynamic temperature and E, is the energy
of each of the 2" spin configurations of the Ising model
(1), labelled by n={0,,...,0,}. The lowest-energy states
appear with higher probability, and the probability of
obtaining the ground state, that is, the desired solution
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of the Ising model, increases as the temperature is low-
ered. To produce such a state at thermal equilibrium, the
system evolves according to a master equation, typically
of the form

dp

n

dt

©)

== nmpn + Wmnpm’

where p, is the probability of being in the nth energy
state and w,,, is the rate for transition from the nth to
the mth state. The rates are taken such that in the limit
that time ¢t — oo the probability distribution follows (2).
Evolving equations (3) long enough guarantees obtain-
ing the low-energy solutions for a sufficiently low tem-
perature. The main problem is that particular energy
landscapes require extremely long times before thermal
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Fig. 1| Combinatorial problems, the Ising model,

and its energy landscape. a | Examples of combinatorial
optimization problems. In the travelling salesman problem
(top), the aim is to find the shortest possible route that visits
each city exactly once and returns to the origin city. The
travelling salesman problem can be mapped onto the Ising
model by encoding the information of the city and its route
ordering as a spin variable. The total number of spins
required is the square of the number of cities. For MaxCut
(bottom), the the optimal division is indicated by the
dashed line. b | An example of an eight-spin Ising model,
equivalent to the MaxCut problem in part a. On each node
is a two-valued spin (arrow). Edges correspond to assigning
an coupling between spinsiandjofJ;=1.c | Schematic
energy landscape of the Ising model and some mechanisms
used in Ising machines to overcome local minima: thermal
excitations used in classical thermal annealing, quantum
tunnelling in quantum annealing, the minimum gain
principle in coherent Ising machines, and attractors in
dynamical system evolution.

equilibrium is reached, owing to the possibility of getting
trapped in a local minimum (FIG. 1¢). The solution to this
problem is to gradually lower the temperature or anneal
the system such that at each temperature the system has
a chance to equilibrate. By reducing the temperature
with an inverse logarithmic dependence on time, one is
guaranteed to obtain the ground state®.

As a classical computer algorithm, simulated anneal-
ing (SA) remains one of the most popular algorithms
that can be applied to optimization problems. On a
classical digital computer, it is preferable to perform an
equivalent stochastic sampling approach, rather than
run equation (3) directly, owing to the exponential
resources required. As such, typically one uses a Monte
Carlo algorithm employing the Metropolis-Hastings
algorithm®»*, such that the desired Boltzmann distri-
bution is obtained. Substantial improvement over SA
is obtained by more sophisticated classical algorithms,
such as parallel tempering’*, population annealing™
and isoenergetic cluster moves™, to mention a few. For
both parallel tempering and population annealing, mul-
tiple copies of the system are prepared in random initial
states. For parallel tempering, each copy has a different
temperature parameter. The temperature is increased for
the copies that perform poorly and is decreased for the
ones that perform successfully. In population annealing,
poorly performing copies are probabilistically removed
and those that perform successfully are replicated, while
reducing the temperature®>*.

Simulated annealing has also been implemented in
dedicated hardware using digital hardware accelerators
and analogue natural computing approaches, providing
the chance to exploit the parallelization of such hard-
ware. For analogue computation, numerous physical
implementations of Ising and related models have been
realized or proposed, including magnetic devices””"*,
optics**, memristors*”™, spin-switches’’, quantum
dots™, single atoms™, microdroplets® and Bose-Einstein
condensates™* (FIC. 2). For example, stochastic magnet
tunnel junctions can act as probabilistic bits, which ther-
mally fluctuate between either parallel or antiparallel
mutual orientations of magnetic domains®*** (FIG. 2a).
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An arbitrary Ising interaction between the coupled bits ~ This set-up was used to factor integers by an adiabatic
is realized by measuring the orientation of the bits and  procedure®. In another approach, memristors have been
adjusting the barrier energy between the two orientations.  used to perform an analogue matrix multiplication of the

a Stochastic magnetic tunnel junctions b Memristor crossbar
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Fig. 2 | Example technologies used to realize various types of Ising machines. a | Stochastic magnetic tunnel junctions
such as a probabilistic bit (p-bit; right) have a lower energy barrier AE between parallel (P) and antiparallel (AP) orientations
of the magnetic layers, compared with conventional magnetoresistive random-access memory (MRAM; left). b| Memristor
crossbar array to perform matrix-vector multiplication®. c| Metal-insulator VO, system to realize coupled electrical oscillators.
d | Complementary metal-oxide—semiconductor (CMOS) chip with 28-nm transistors, which realizes a 1-million-spin
Boltzmann machine. e | In a Boltzmann machine realized using Co atoms (grey dots) on the surface of black phosphorus
(blue dots) interacting with a scanning tunnelling microscope, spins s, and s, switch stochastically whereas spin k remains
fixed. The gate voltage V is above the threshold V,, for stochastic switching. f| Spatial light modulator (SLM)-based photonic
annealer. g | Coherent Ising machine measurement—feedback loop. PSA, phase-sensitive amplifier. Part ais adapted with
permission from REF.*. Part c is adapted with permission from REF.'*. Part d is adapted with permission from REF.%. Part e is
adapted with permission from REF**. Part f is adapted with permission from REF.*°. Part g is adapted with permission from REF.*%.
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Ising matrix to evaluate the energy; using the intrinsic
hardware noise, they performed a highly parallelized
implementation of a Ising model annealer (FIC. 2b). In
optical systems, the Ising model was realized by encod-
ing the spins using the phase of the light, and a recur-
rent feedback network was used to produce the Ising
couplings*~** (FIG. 2f). This system converges towards the
Boltzmann distribution (2), with the primary advantage
being the fast parallelized spin updates.

For digital-electronic approaches, hardware acceler-
ators using CMOS application-specific integrated cir-
cuits (ASICs)*** and field-programmable gate arrays
(FPGAs)*'"* have been investigated to solve the Ising
model as a type of domain-specific computing. For
example, complementary metal-oxide-semiconductor
(CMOS) circuits have been used to implement 2 x 10*
Ising spins; each spin interacts with up to five local
spins®*. Random thermal effects were introduced by
either introducing random spin-flips during calcula-
tion of spin values or applying a low supply voltage to
the memory cells, which also introduces randomness
at the level of the hardware. In another approach, an
8,192-spin Ising machine with full connectivity was real-
ized, based on a digital-CMOS-chip implementation of
SA, where spin updates are performed in paralle]’*%6"%*,
The parallelization allows for a large speed-up in com-
parison to a serial implementation of SA. We note that
in the context of machine-learning accelerators®, hard-
ware implementations of Boltzmann machines have been
investigated with CMOS ASICs”~* (FIC. 2d), FPGAs™""
and graphics processing units (GPUs)"*””. The similarity
of the underlying energy model of Boltzmann-machine
hardware accelerators suggests that such technologies
could be adapted to act as Ising solvers. For instance,
an FPGA implementation of the restricted Boltzmann
machine’s stochastic sampling algorithm to solve the Ising
problem has been demonstrated®. In this case, the prob-
lem is mapped to a bipartite version and each group of
spins is updated by applying parallel SA*”®. The inherent
parallelism of this architecture allows parallel sampling,
which provides substantial improvement over SA.

Dynamical system solvers

In a thermal annealer, at any given point of time dur-
ing the evolution, the system is ideally in a state that is
at thermal equilibrium, following the Boltzmann dis-
tribution. Likewise, as discussed below, in a quantum
annealer the system ideally remains in the ground state
of the instantaneous Hamiltonian. To ensure these con-
ditions, annealing must proceed sufficiently slowly to
maximize the probability that the minimum energy
state of the Ising model is obtained. In contrast to such
annealing-based approaches, alternative strategies exist,
in which the system evolution is much faster than ther-
mal equilibriation and adiabatic timescales. In such
dynamical system approaches, the state of the system
is driven towards the lowest energy state of the Ising
model. An early example of such a dynamical solver
used electronic circuits to realize equation (1)”*. In
this section, we explain three types of dynamical system
solvers: coupled oscillators, coherent Ising machines and
chaotic systems.

REVIEWS

Oscillator-based computing. Dating from the 1950s, the
‘parametron’ computer is a pioneering type of analogue
computer, based on coupled oscillators®-*. The state
information, such as the configuration of an Ising spin,
is represented by the phase of an oscillator. In the pres-
ence of a nonlinearity, an oscillator with resonant fre-
quency w, can be phase-locked with a pump frequency
2w, with two possible stable phases, 0 or m, that repre-
sent the digital information. In its original conception,
information processing in the parametron computer
occurs as a sequence of logical gates. However, it was
also shown that a computation can be performed in a
more parallel, natural computing approach (as reviewed
in REFS**%). Such coupled oscillators can be used for
solving combinatorial optimization problems, such as
the Ising model.

The basic idea of oscillator-based computing can be
captured by the Kuramoto model, which describes a sys-
tem of oscillators mutually coupled by an interaction®**.
Consider N oscillators, labelled by index i, that oscillate
with frequency w,. Denote the phase of the ith oscillator
by ¢,. Mutually coupling the oscillators, the dynamical
system can be described by

de¢,
d—q;’ =wy+KY J;sin(¢,- ¢) + Kh;sin(¢,— wot),  (4)
j

where K is a coupling parameter that controls the overall
contribution of the Ising dynamics. In the rotating frame,
gze sin(¢. — ¢.) factor has two steady-state solutions
—1 =0, where the phases are either in or out of phase.
The sin(¢, - wyt) term is also stable when ¢, — w,t=0,m.
Thus, the system converges to a particular configuration
of phases; in a simulation of the Ising model a spin read-
out can be performed from this configuration. For the
case of constant ], and h,=0, the Kuramoto model can be
analytically solved to show a dynamical phase transition
between unsynchronized and synchronized oscillators,
for particular interaction strengths. This type of dynam-
ics has been applied to numerous artificial intelligence
problems, such as image processing, pattern recognition
and generation®**.

Such oscillators, implemented as a system of coupled
LC circuits, have been proposed as a means to solve
the graph colouring problem®*. The aim is to colour the
vertices of a graph with k colours such that no adja-
cent vertices have the same colour; for k>3 this is an
NP-complete problem. For k=2, the oscillator scheme
is able to correctly find solutions, but for the more dif-
ficult k=3 case the scheme only succeeded for a subset
of problem instances®. The approach was theoretically
further developed, including explicitly extending to the
case of solving Ising problems and analysing various
possible physical implementations’~°. Oscillator net-
works have been experimentally demonstrated with sys-
tems such as bulk analogue electronic oscillators’*-%,
the VO, insulator-to-metal transition'®'** (FIG. 2¢),
spin oscillators'”'** and integrated CMOS electronic
oscillators'®"'"". These systems have been used to solve
problems such as graph colouring, maximum independ-
ent set and the Ising model. In several of these studies,
the network was enabled to find low-energy solutions
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of the Ising model by adding noise and turning on the
interactions smoothly.

A related approach called memcomputing uses
networks of Boolean logic gates as a dynamical sys-
tem solver. These have conceptual similarities with
oscillator-based Ising machines, even if they are not
explicitly constructed from networks of oscillators'*'*.
Such approaches have been applied successfully to
frustrated-loop Ising model instances''!"".

Coherent Ising machine. Oscillator-based Ising machines
of a particular class, dubbed ‘coherent Ising machines’
(CIMs), are naturally suited to being implemented with
optical oscillators''*""*! (FIC. 2¢g). Each Ising spin o, in a
CIM is encoded in the phase ¢, of light in an optical
mode. To enforce binary spin values ¢,=0,m, CIMs use
degenerate optical parametric oscillators (DOPOs),
which are a form of parametric oscillator in which
phase-sensitive gain yields oscillations either in-phase
or out-of-phase with respect to the oscillator’s pump
light''>'>2. Each DOPO represents a single spin and is
part of a network of DOPOs that are coupled together
such that the coupling between a pair of DOPOs is pro-
portional to the Ising spin-spin coupling J,. Several
ways to realize couplings have been proposed*''*-''¢,
but for the experimental demonstrations performed thus
far, the details of the coupling scheme are not crucial for
understanding the Ising-solving capability of each CIM
implementation.

Modelling DOPOs as classical oscillators, the time
evolution of a CIM can be modelled by the following
system of coupled differential equations in the rotating
framell3,ll7:

da,
i * 2
— =—ya;+ra; —«la|"a,—g . Ja;— gh; +n;,
j

at (5)

where each g, is a complex number representing the opti-
cal field in the ith mode, y is the decay rate of the pho-
tons from each mode, r is the amplification provided by
DOPO gain, « is the coefficient of nonlinear loss due to
OPO gain saturation, g is a coupling constant determin-
ing the strength of the Ising interactions, and #, are
Langevin noise operators associated with the photon
decay and nonlinear gain. The notation * denotes complex
conjugation. The effect of the Ising terms —gX.J,a,— gh,
can be thought of as additional loss terms that act on
the ith mode.

The key differences between these equations of motion
and those for Kuramoto oscillators (4) are that the oscil-
lator amplitudes are explicitly considered, in addition to
their phases, and there are loss and gain terms; it is these
terms that are responsible for DOPOs having an oscil-
lation threshold. For a single DOPO, the loss and gain
terms result in the DOPO being bistable: above thresh-
old, a DOPO oscillates either exactly in-phase or exactly
out-of-phase. Because the Ising terms can be interpreted
as spin-configuration-dependent loss, one can interpret
the DOPO network as having a collective-oscillation
threshold that is lowest when the Ising terms are small-
est, and hence when the represented spin configuration
has minimum energy. If the CIM is operated such that the

gain is slowly increased from 0 (where the DOPO net-
work is below threshold) to ever-higher values — that is,
ris not a constant, but rather a monotonically increasing
function of time — then, in the absence of noise #, the
DOPO configuration with the lowest loss should oscillate
first (see the minimum gain principle illustrated in FIG. 1¢)
and the solution to the Ising problem can be read out by
measuring the phases of the light from each DOPO. An
important point to note is how slowly r can be increased
and have the CIM still oscillate in the ground state for
a length of time sufficient to allow measurement: even
in the complete absence of noise (which is not experi-
mentally realistic, but can be programmed in a computer
simulation), the CIM does not find the exact solution to
arbitrary Ising problems in polynomial time. An impor-
tant technicality that arises in the CIM model (5), and in
other oscillator-based Ising machines in which the oscil-
lators have both amplitude and phase degrees of freedom
(as opposed to just phase), is that if the amplitudes |a;| of
the oscillators are not equal, then the system tends to min-
imize the energy of an Ising instance with a different J,
matrix from the desired one. This phenomenon is some-
times referred to as a broken mapping due to amplitude
heterogeneity. An intuitive fix is to add a feedback mech-
anism that forces the amplitudes |a;| to be equal, as has
been studied for XY machines'* and Ising machines'"*.

The classical description of a CIM (equation (5)) is
sufficient to explain the results obtained so far in experi-
mental demonstrations'*"!¢11%124°126 ‘because these
experiments have used DOPOs with relatively large
round-trip (photon) loss. However, with sufficiently
low loss, each DOPO can generate an appreciable
amount of quadrature squeezing, and in this regime the
CIM’s dynamics are more faithfully modelled quantum
mechanically'”. An interpretation for CIM operation that
arises in the quantum-mechanical formulation is that each
DOPO begins in a squeezed state that is approximable by
a coherent superposition of in-phase and out-of-phase
coherent states |a) + |—a), so the below-threshold state
of the CIM is one in which every spin configuration
is represented in superposition. When the CIM goes
through threshold, one of the configurations is selected.
It is an open question to what extent quantumness of the
DOPO network may improve (or impair) the computa-
tional performance of a CIM'*". A quantum model for a
machine conceptually similar to a quantum-regime CIM,
in which superpositions |a) + |-a) are also formed, has
been studied'””. The machine acts as an adiabatic quan-
tum computer when the pump rate (the equivalent of r
in the CIM model) is increased from 0 sufficiently slowly.
This theoretical connection suggests that insights into
the solution mechanisms of quantum annealers might be
helpful for understanding CIMs, especially CIMs in which
the coupling between DOPOs is conservative rather than
dissipative, and vice versa.

Besides the CIM, there have been proposals and
demonstrations of several types of optical and opto-
electronic Ising and Ising-like machines in addition to
those cited in the subsection on thermal annealers: sys-
tems based on coupled lasers'**"'*!, optoelectronics'*,
exciton-polaritons’»'**="*¢ and electromechanical
systems'*"*,
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Chaos in dynamical system solvers. In an ergodic sys-
tem, the dynamics are such that the system visits all
parts of configuration space. This is an attractive idea
in the context of solving the Ising model, since in many
approaches getting trapping in local minima is the cause
of the exponential slowdown. Numerical studies study-
ing thermal relaxation have showed that the process is
strongly non-ergodic, and does not visit all parts of con-
figurational space'”. Several studies have suggested that
modifying the dynamics to include chaos would yield an
improvement in performance'®*-1*2,

Limit-cycle-free dynamical systems have been
designed with fixed-point attractors that are the solu-
tions of a given optimization problem'*; in particu-
lar, k-SAT, which is — like the Ising problem — an
NP-complete decision problem with an NP-hard opti-
mization version. The formulation of the dynamical sys-
tem involved both state variables s, corresponding to the
variables in the k-SAT problem (analogous to spin varia-
bles for an Ising problem) and auxiliary variables a,. The
dynamical system has an appealing theoretical property:
it avoids becoming stuck in local minima of the k-SAT
cost function. However, this comes at a price: the aux-
iliary variables grow exponentially in time. As a result,
an analogue hardware implementation of the dynami-
cal system requires an exponentially growing amount of
energy to operate (a prototype CMOS demonstration'*
for problems with up to 50 variables artificially capped
the signals representing the auxiliary variables at 1V).
In addition, a digital hardware implementation that
integrates the differential equations requires exponen-
tially small timesteps because the differential equations
become stiff" >+,

Numerical simulations indicate that the dynamical
system undergoes a transient period of chaos when
solving difficult instances of the k-SAT problem, but not
when solving easy instances'*’. It was therefore suggested
that chaos might be unavoidable in approaches to solv-
ing hard optimization problems. A discrete-map opti-
mization algorithm'* applied to solving both k-SAT and
Ising problems also exhibits chaotic dynamics. The gen-
eral approach in REF.* for designing a limit-cycle-free
dynamical system that avoids being trapped in k-SAT
local minima through the use of auxiliary variables
has been adopted for Ising solving'', and has been
implemented and benchmarked with an FPGA'*.

Quantum approaches

Quantum annealing. Quantum annealing (QA)*'*>~'* is
a heuristic algorithm based on the quantum adiabatic
theorem as proposed in REF'* and has been studied in
the context of the Ising model'”. In this algorithm, the
system is initially prepared in the known ground state
of a Hamiltonian H,. A common choice for this initial
Hamiltonian is

(6)

where N denotes the number of qubits, o;* denotes the
Pauli x operator on the ith qubit, and the ground state is
the uniform superposition of all possible configurations
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|+)®Y, where |+) = (|0) +|1))/~/2. The Hamiltonian
is gradually re-weighted to the desired problem
Hamiltonian H, according to

H=(1-A(t))H,+ A(t)Hp, (7)
where A(t) € [0,1] is the annealing schedule. The anneal-
ing process can be viewed as H introducing quantum
fluctuations originating from the non-commutability
of H, and H,,. These fluctuations are gradually reduced
to reach the low-energy configuration of the classical
energy function H,. Based on the quantum adiaba-
tic theorem, for a sufficiently slow sweep, the system
remains in its instantaneous ground state throughout
the evolution'*>'*". The sweep time for which adiabatic-
ity can be achieved is proportional to a negative power
of the minimum energy gap between two lowest-energy
levels during the sweep'*'~'".

The use of quantum fluctuations in QA has been
hypothesized as a potential resource for a speed-up
over classical methods. Quantum tunnelling allows
the system to pass through energy barriers (FIC. 1¢).
However, despite several decades of investigation, the
computational role of coherent tunnelling in providing
speed-up is not completely understood'*>'*>'*. Part of
the reason for this is the difficulty of simulating QA
on classical computers due to the large computational
overhead. The only quantum hardware that has so far
been able to directly test QA with a large number of
qubits is that developed by D-Wave Systems. Although
this technology still suffers from limitations such as the
presence of decoherence, control errors and limited
connectivity, several studies have shown that quantum
effects do play a role in the D-Wave machine'*-'*°. For
problem instances that possess tunnelling barriers, QA
and quantum-inspired classical algorithms that mimic
tunnelling'”” have been shown to have an advantage
over SA.

Hybrid quantum-classical algorithms. The aim of var-
iational quantum algorithms'® is to solve classical and
quantum optimization problems by combining a para-
metrized quantum circuit with a classical optimizer to
obtain the variational parameters. The parametrized
quantum circuit can be thought of as preparing a var-
iational quantum state, which is optimized to give the
lowest-energy state of a given Hamiltonian. These algo-
rithms are believed to be strong candidates to achieve a
practical quantum advantage on noisy intermediate-scale
quantum (NISQ) devices'®'. In the context of combina-
torial optimization problems, the quantum approximate
optimization algorithm (QAOA)'* has particularly
attracted a lot of interest, partially as a result of the exist-
ence of theoretical guarantees on the approximation ratio
that it can achieve for certain classes of optimization
problems*>',

The QAOA algorithm can be viewed as a Trotterized
version of QA with a parametrized annealing pathway'®.
The system is initially prepared in [+)®", the ground
state of the Hamiltonian (6). The parametrized quan-
tum circuit transfers the initial state to the ground state
of the target problem Hamiltonian (in the ideal case) by
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alternately applying the unitary operator correspond-
ing to the problem Hamiltonian e ?/"* and the unitary
operator e ¥, This sequence generates the following
quantum variational state

ly(B,y)) = ¢ BHoeminHe ... o=1F HoginHe |+)®N, (8)
where y=(y,3,,-,) €10, 2n)? and B= (BB, Y
€0, 7t]Pare 2p variational parameters and p determines
the circuit depth. Next, a classical optimizer is applied
to find the optimal B,y that optimizes the energy expec-
tation E(B,y) = (y(B, )| Hply(B,y)) by updating the
variational parameters iteratively. Various approaches
have been applied for this classical optimization step
such as brute-force grid search'*?, gradient descent
methods'® and machine learning'*. A key feature of
QAOA is that the computational power increases with
P (REFS'®*'%7) in contrast with QA, in which the perfor-
mance does not always improve with annealing time'®.
Under reasonable complexity-theoretic assumptions,
QAOA with p=1 cannot be efficiently simulated with
classical computers'®, or it implies that P =NP. This
result has led to speculations that QAOA may be able
to demonstrate a quantum computational advantage in
the context of an optimization problems on near-term
quantum computers'**. However, the class of problems
that can be solved efficiently with shallow circuits may
not be representative for problems of practical inter-
est. For example, for all-to-all connected Ising mod-
els and MaxCut, it has been shown that deep circuits
may be required'®’. Therefore, benchmarking compu-
tational advantages of QAOA against classical algo-
rithms requires going far beyond problems that can be
solved with a shallow circuit and instead exploring the
power of QAOA at intermediate depths. However, at
current technological levels such circuits are prone to
decoherence and gate errors'®.

QAOA has been demonstrated at the small scale on
platforms such as superconducting qubits'®’, photonics'”
and trapped ions'”. So far, no large-scale (that is,
N>50) demonstrations of QAOA have been experi-
mentally performed. We note that classical simulations
showing expectation results for single-layer (p=1)
QAOA on problems with up to N=10° spins have been
performed'”, but as is the case with quantum annealers,
itis expected that large-scale quantum hardware will be
needed to properly evaluate the performance of QAOA
in general.

Other quantum algorithms. Several other quantum algo-
rithms have been proposed to solve combinatorial opti-
mization problems'”. These include using approaches
based on amplitude amplification, and quantum sim-
ulated annealing (not to be confused with simulated
quantum annealing below). In these approaches, the aim
is to prepare the quantum Gibbs state, a superposition
state with Boltzmann probabilities (2) as the amplitudes.
The quantum Gibbs state is attained by performing a
quantum walk such that after many iterations the desired
coherent Gibbs state is obtained'”*"'”*. Then, in a similar
way to thermal annealing, the temperature is gradually
lowered to obtain a low-energy state.

Other classical algorithms

Quantum-inspired classical algorithms. Inspiration
from quantum algorithms has led to proposals for new
types of classical algorithms. Such quantum-inspired
algorithms are run on conventional computing hard-
ware or on digital hardware accelerators, and hence are
classical approaches, but use concepts that originate
from quantum mechanics in the algorithm. We briefly
summarize several approaches in this direction.

In simulated quantum annealing (SQA), quantum
Monte Carlo is applied to estimate the low-energy states
of the QA Hamiltonian'"*"7%. To perform the quantum
Monte Carlo, a stoquastic QA Hamiltonian is mapped
to a classical Hamiltonian by introducing an extra spa-
tial dimension, corresponding to imaginary time. A
stoquastic Hamiltonian is characterized by having only
non-positive off-diagonal elements in the computational
basis. The new Hamiltonian has equivalent equilibrium
properties to the original QA Hamiltonian'””. The map-
ping can be implemented either in discrete time by
applying the Trotter-Suzuki decomposition, or in con-
tinuous time by applying a path integral'””. Quantum
Monte Carlo in the continuous time limit samples the
equilibrium thermal state of a quantum system (as
opposed to directly simulating its unitary time evolu-
tion) and can generate Boltzmann-distributed states (2).
At sufficiently low temperatures, SQA can mimic
tunnelling effects. SQA can also generate entangled
ground states that occur during the adiabatic evolution.
It can thus faithfully predict the performance of QA for
stoquastic Hamiltonians.

Several other quantum-inspired classical algorithms
based on dynamical system evolution have been pro-
posed. In simulated CIMs, the equations modelling the
CIM are simulated on a classical computer, and used as
an algorithm to solve the Ising model. It has been shown
that such a simulation has a speed-up compared to a
physical implementation of a CIM applying FPGA'® and
GPU'. The key observation here is that such simula-
tions are described by a set of coupled equations of the
form (4) or (5), which scale with the number of spin vari-
ables N, rather than the configurational space 2V. Thus,
a simulation of the coupled-oscillator system is efficient.

Another approach is simulated bifurcation (SB),
which is based on simulating adiabatic evolutions
of classical nonlinear Hamiltonian dynamical sys-
tems. This algorithm is the classical counterpart of
bifurcation-based adiabatic quantum computation'”’.
Two branches of the bifurcation in each nonlinear
oscillator represents two states of each Ising spin. In
2019, Toshiba developed an FPGA- and GPU-based SB
machine showing excellent performance due in part to
its high parallelizability'®>'®. The operational mecha-
nism of the SB algorithm operates based on an adiaba-
tic and ergodic search. Later, two other variants of SB
were introduced, called the ballistic simulated bifurca-
tion algorithm (bSB) and the discrete simulated bifur-
cation algorithm (dSB)'®, which far outperform the
original SB in terms of both speed and solution accu-
racy. These new algorithms apply new approaches,
such as a quasi-quantum tunnelling effect. Recently, a
multi-chip architecture using a partitioned version of the
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SB algorithm was implemented with FPGAs, showing
that the method can handle large-scale Ising problems'®.
Both CIM simulations and the SB algorithm are paral-
lelizable, by simultaneously updating at each time step N
coupled-oscillator variables. In contrast, SA canonically
involves sequential updates of spins, with simultaneous
updates allowed only for isolated spins.

Yet another quantum-inspired algorithm involves
tensor networks, which are a powerful framework that
provides representations of complex quantum states
based on their entanglement structure'®. Tensor net-
works have been applied as an ansatz to solve optimi-
zation problems'*®'¥”. Such an approach was used in the
context of dynamic portfolio optimization, which can be
encoded as an Ising problem'**.

Machine-learning approaches. Meanwhile, owing to
the synergy between machine learning and combina-
torial optimization algorithms, a new era at the inter-
face of both fields is growing to take the best of both
and develop new methods to deal with combinatorial
optimization problems. In particular, the emergence
of methods that are more sample-efficient makes them
more scalable to large-scale problems. Machine-learning
algorithms can be applied to either boost the perfor-
mance of traditional classical solvers and quantum
algorithms'®-"' or can work as a stand-alone solver'®’.
For example, some machine-learning algorithms have
been applied to accelerate Monte Carlo simulations'™>""".
Deep-learning-based methods applying reinforcement
learning'*>'*%, graph neural networks'”*'*° and neural
attention mechanism'”” have also been investigated as
solvers for combinatorial optimization problems.

Computational complexity

How do the computing approaches discussed in this
Review relate to computational complexity? What are
the prospects for devising an Ising machine that can
solve Ising problems efficiently (that is, in polynomial
time)? Although the P = NP question remains an
open problem, it is widely conjectured that P =NP, in
other words, that certain problems in NP, including the
Ising problem, are fundamentally more difficult to solve
than those in P. Indeed, decades of work in computer sci-
ence, physics, mathematics and operations research has
failed to find a polynomial-time algorithm that solves
any NP-complete problem. The explosion of interest in
quantum computing since the 1990s was kicked off by
the discovery that integer factorization could be per-
formed in polynomial time on a quantum computer'*.
It is thus conjectured that the BQP complexity class —
decision problems that a quantum computer can solve in
polynomial time with an error probability of at most 1/3
— is alarger class than P, that is, P C BQP. The associated
class for a probabilistic Turing machine, the BPP class,
is meanwhile conjectured to be equivalent to P, that is,
P =BPP. This conjecture in general remains unproven,
but is true if a suitable pseudorandom number generator
is available'””. Although there is no proof that quantum
or probabilistic computers cannot solve NP-complete
problems such as the Ising problem in polynomial time,

it is considered unlikely**.
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The complexity-class arguments above concern solv-
ing the Ising problem in the sense of being able to find
the exact ground state for all possible problem instances
(all possible J,,h, in equation (1)). However, as mentioned
in the Introduction, an approximate solution with an
energy close to the true ground state is often acceptable
for practical applications. Three approaches for solving
combinatorial optimization problems, such as the Ising
problem, are exact algorithms, approximation algorithms
and heuristic algorithms. Exact algorithms are designed
to find solutions in a way that guarantees that the
returned solutions are exactly optimal. Approximation
algorithms return solutions that are not necessarily opti-
mal but are guaranteed to be within a certain distance of
optimality. Heuristic algorithms return solutions without
any guarantee on their quality; because of this lack of
theoretical guarantee, the primary basis for trusting an
heuristic algorithm is from previous empirical (bench-
marking) results. Both approximation and heuristic
algorithms tend to be practical to run on large problems.

One consideration for approximation algorithms is
what solution quality (formally, approximation ratio) can
be guaranteed. The MaxCut problem, and hence the Ising
model, is approximable-hard (APX-hard). Consequently,
assuming P = NP, there exists no polynomial-time approx-
imation algorithm for the Ising problem that guarantees a
solution arbitrarily close to the exact solution®'. However,
there does exist a polynomimal-time approximation algo-
rithm for MaxCut that finds solutions a fixed distance
from the optimal solution: the Goemans-Williamson
algorithm is guaranteed to find solutions within about
12% of the optimal value*”. It is also known that it is
NP-hard to approximate MaxCut with solutions guaran-
teed to be closer than about 6% to the optimal®”, so it
is expected (assuming P #NP) that no polynomial-time
approximation algorithm that achieves this approxima-
tion closeness is possible. In many practical settings, it
is desirable to find solutions to MaxCut problems that
have distance from the optimal solutions better than
~12% or even ~6%, which motivates the use of heuristic
algorithms to solve MaxCut in practice.

Most Ising machines are heuristic solvers — that is,
they can be thought of as physical machines that realize
heuristic optimization algorithms. As such, they typi-
cally do not provide any approximation-ratio guaran-
tees. The potential advantages of Ising machines largely
lie outside the realm of complexity theory: there is the
possibility that Ising machines have a polynomially
improved scaling or constant-prefactor advantage over
existing heuristic algorithms running on conventional
processors. In other words, it is generally expected that
Ising machines, regardless of their underlying algorithm
or practical hardware implementation, still require expo-
nential runtimes to achieve near-optimal solutions, but
the exponent or the constant factor in front of it may
be smaller than for a conventional solver. A small dif-
ference in the exponent can make a large difference in
runtimes for large problem sizes; the fast clock speeds
of various physical implementations, which give rise
to constant-factor improvements, could lead to signif-
icant practical speed-ups compared with conventional
state-of-the-art solvers.
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Fig. 3 | Success probability comparison of Ising machines. a,b

The probability of obtaining the ground state is shown

for the Sherrington—Kirkpatrick (SK) problem (a) and dense MaxCut problem (b). For the SK problem, the coupling J;
between spinsiand jis chosen from £1 with equal probability. The MaxCut problem is mapped onto the Ising model
by setting J; to 0 and 1 with equal probability. In both cases, the external field h,=0. The labels for each line and their
references are given in TABLE 1. Error bars on original data where present have been omitted for clarity. CIM1, CIM2,
CIM3, DWAV and RBM are benchmarked on the same problem instances. The asterisks denote data reported for
theoretical predictions rather than directly measured from a hardware implementation.

Computation performance comparisons

Because the utility of any Ising machine is in its ability
to solve a given Ising problem both quickly and accu-
rately, an important task is to benchmark performance
and compare competing methods. We direct our atten-
tion particularly to various Ising solvers that have been
experimentally tested for relatively large systems N> 50.
We consider only large systems as it is difficult to extract
any scaling relation for smaller systems. Choosing
experimentally realized systems directs our focus onto
technologies that are relatively near to maturity. For
the figures of merit, we focus on two of the most com-
monly used quantifiers: the success probability and the
time-to-solution. We first define each of these.

The success probability is defined as the probability
that the exact ground state of the Ising model is obtained
in a single run of the Ising machine. The success proba-
bility depends inherently on algorithmic parameters. For
annealing methods under ideal conditions, longer anneal-
ing times generally result in higher success probabilities,
and the success probability can be made arbitrarily close
to 1 in the ideal case. However, practical considerations
typically prohibit approaching unit success probabil-
ity. For example, in quantum annealers, maintaining a
quantum superposition requires the annealing time to
be within the coherence time. In this sense, the success
probability still has meaning, because it often involves
a trade-off with practical considerations. For our com-
parison of success probabilities, we generally quote the
best-performing value available in the literature.

One of the limitations of the success probability as
a figure of merit is that it does not take into account of
how long a single run of the Ising machine takes. An
Ising machine typically performs multiple runs when
attempting to solve a problem, and Ising machines are
often optimally operated for a choice of run parameters
for which the success probability for a single run is not

maximized, but each run takes only a short time. The
time-to-solution is another figure of merit that takes into
account both the time to perform a single run on a given
Ising machine and the success probability. If r runs of a
particular scheme are performed, each having a success
probability p,,. of obtaining the ground state, then the
collective probability of getting at least one successful
runis1—(1-p )" Fora given target collective proba-
bility, say 99%, the time-to-solution is then related to the
success probability as

. In 0.01
In(1-p )

suc

sol —

)

where 7 is the time taken for each run. This measure
takes into account the different clock speed of various
approaches, and allows for various approaches to choose
their optimal parameters such that the best performance
of the machine can be extracted.

In FIC. 3 we show the performance of various Ising
machines, quantified by the success probability for ran-
dom instances of Sherrington-Kirkpatrick (SK) prob-
lems and dense MaxCut problem instances. We note
that although the same types of models are used for the
comparison in FIGS 3 and 4, the same problem instances
were not necessarily used, as we have compiled results
from different studies. Although the comparisons are
not perfect, we hope that these figures nevertheless give a
sense of state of the art of various approaches. In numer-
ous works, the general scaling behaviour is observed to
follow the relation

-bN
psuc xe ’

(10)
where b is a fitting parameter. Keeping in mind the inter-
pretational caveat mentioned above about how the suc-
cess probability can for some Ising-machine approaches
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be made high at the expense of long runtimes in a way
that is ultimately not useful, the results in FIC. 3 sug-
gest that at current technological levels, SA-based
approaches, such as the restricted Boltzmann machines
(RBMs), implemented on digital hardware give the
best scaling with N. One of the reasons for the high
success probability of RBMs is the inherent parallelism
of this architecture which allows parallel SA updating.
However, we note that this figure does not include results
from state-of-the-art dynamical systems algorithms such
as the CIM with amplitude-heterogeneity correction''®'**
and SB'*. Based on these algorithms’ excellent perfor-
mance on the G-set MaxCut instances, one may antic-
ipate that they would be competitive with RBM-based

REVIEWS

solvers. It is notable that the quantum annealer has a
particularly poor performance in comparison to other
methods. This can be understood'” as a consequence
of the benchmarked D-Wave machine having quantum
bit (qubit) connectivity given by a low-degree (Chimera)
graph that cannot natively implement either the dense
MaxCut or SK models (see TABLE 1). An embedding
procedure that requires «N? physical qubits is used to
realize the equivalent graph, and this puts the D-Wave
annealer at a disadvantage compared with the other
listed approaches, which feature all-to-all spin connec-
tions. It is for this reason that the success probability
for the D-Wave maczhine has a relation which more
resembles D eV,
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1 01004 /e
10
R <
E] b o
s s
§ 0.01 §
8 1 8
() ()
£ ] E
=10 -
—— —— —— — ‘ ‘ — — —
400 600 800 1,000 0 50 100 150 200
N N
— RBM DWAV1 ——CIM1 ——BLS TBM1 ——CAC SA1 FDA1 ——PT1 ——PRIS* —— MRT*
------ CIM2 SA2 -—-PT2
-—=CIM3* e PT3
c 3R3X d Logical-planted/deceptive
10" 10*
Z 107 = L
c c 107+
L L
s 5
o 104 g
[©] [
: 5 107
£ ~ £
£ 1074 =
107 107
6 360 660 0 1,600 Z,dOO
N N
—MEM ——PT4 DWAV2 TBM2 FDA2  ——SAT SA3 —PT+ICM ——HFS ---SQA1
DWAV3
DWAV4

Fig. 4 | Time-to-solution (TTS) comparison of Ising machines. The time to
obtain a 99% success probability of obtaining the ground state is shown for
the Sherington—Kirkpatrick (SK) problem (a); dense MaxCut problem (b); 3R3X
problems (c); and logical-planted (dashed lines) and deceptive cluster loops
(solid lines) instance classes (d). For the SK and MaxCut cases, the Ising model
definitions are as in FIG. 3. The 3R3X, logical-planted, and crafted problem
definitions can be found in REF.”%, REF."*" and REF.*", respectively. The labels
for each line and their references are given in TABLE 1. Error bars on original

data where present have been omitted for clarity. For both SK and MaxCut,
CIM1, CIM2, CIM3, DWAV and RBM are benchmarked on the same problem
instances. For each reference, the best time to solution quoted is taken for
each N. For results showing multiple annealing times, we have taken results
optimized over annealing times. Data reported for theoretical predictions,
rather than being directly measured from an hardware implementation, are
labeled with *. 3R3X data are from REF.”*. Logical-planted data are from
REF."*’. Deceptive cluster loops data are from REF*'",
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Table 1| Types of Ising machine examined in FIGS 3 and 4

Ising machine/ Acronym Operating principle Hardware Hardware Parallelization® Benchmark Reference©

algorithm connectivity problem

Breakout local BLS Localsearch and simulated ~ CPU All-to-all No SK Fig.3a'

search annealing algorithm

Chaotic amplitude CAC Dynamical chaotic FPGA All-to-all Yes SK Fig. 3a'*

control algorithm

Coherent Ising CIM1 Dynamical oscillator Hybrid (optical/  All-to-all Yes MaxCut, SK  Fig. S6'*°

machine (NTT) FPGA)

Coherent Ising CIM2 Dynamical oscillator Hybrid (optical/  All-to-all Yes MaxCut, SK  Fig. S6'*°

machine (Stanford) FPGA)

Coherent Ising CIM3 Dynamical oscillator Predicted® All-to-all Yes MaxCut, SK  Fig.S10"

machine algorithm

D-Wave quantum  DWAV1  Quantum annealer Superconducting Chimera Yes MaxCut, SK  Fig. 3b,4c'"

annealer 2Q qubits

D-Wave quantum  DWAV2  Quantum annealer Superconducting Chimera Yes 3R3X Fig. 2%

annealer qubits

Advantagel.1

D-Wave quantum  DWAV3  Quantum annealer Superconducting Chimera Yes LP Fig. 2"’

annealer 2KQ qubits

D-Wave quantum  DWAV4  Quantum annealer Superconducting Chimera Yes Deceptive Fig. 1%

annealer 2KQ qubits

Fujitsu digital FDA1 Simulated annealing ASIC All-to-all Yes SK Fig.7a*®

annealer algorithm

Fujitsu digital FDA2 Simulated annealing ASIC All-to-all Yes 3R3X Fig. 2%

annealer algorithm

Hamze—de- HFS Tree sampling CPU All-to-all No Deceptive  Fig. 1%

Freitas—Selby

Memcomputing MEM Dynamical logic gate CPU All-to-all Yes 3R3X Fig. 2%
algorithm

Memristor MRT Simulated annealing Predicted® All-to-all Yes MaxCut Fig. 6a, 6b*

annealing algorithm

Photonic recurrent  PRIS Oscillator-based annealer Predicted® All-to-all Yes MaxCut Fig. 2b*

Ising sampler

Parallel tempering ~ PT1 Simulated annealing CPU All-to-all No MaxCut,SK  Fig.S12'*°
algorithm

Parallel tempering ~ PT2 Simulated annealing CPU All-to-all No SK Fig. 7a*®
algorithm

Parallel tempering  PT3 Simulated annealing CPU All-to-all No SK Fig.3a'*
algorithm

Parallel tempering  PT4 Simulated annealing CPU All-to-all No 3R3X Fig. 2%
algorithm

Isoenergetic PT+ICM  Monte Carlo algorithm Digital-CPU All-to-all Yes Deceptive  Fig. 1**

cluster moves plus
parallel tempering

Restricted RBM Simulated annealing FPGA All-to-all Yes MaxCut,SK  Fig. 3,4*
Boltzmann machine algorithm

Simulated SA1 Simulated annealing CPU All-to-all Yes SK Fig. 3a'"
annealing algorithm

Simulated SA2 Simulated annealing CPU All-to-all No SK Fig.7a*®
annealing algorithm

Simulated SA3 Simulated annealing GPU All-to-all Yes LP Fig. 2"’

annealing algorithm

SAT on GPU SAT SAT algorithm GPU All-to-all Yes 3R3X Fig. 2%

Simulated SQA1 Quantum Monte Carlo GPU All-to-all Yes LP Fig. 2%’

quantum annealing algorithm

Toshiba bifurcation TBM1 Discrete simulated FPGA All-to-all Yes SK Fig. 3c¢**
machine bifurcation algorithm

Toshiba bifurcation TBM2 Discrete simulated GPU All-to-all Yes 3R3X Fig. 22

machine bifurcation algorithm

*Parallelization column indicates approaches in which simultaneous updates of Ising spins are performed. bIf the results of FIG. 3 and 4 are for theoretical
predictions, rather than being directly measured from a hardware implementation, the hardware type is quoted as being “Predicted”. “Figure numbers are those in
the cited references. ASIC, application-specific integrated circuit; CPU, central processing unit; FPGA, field-programmable gate array; GPU, graphics processing
unit; LP, logical-planted; SK, Sherrington-Kirkpatrick model; 3R3X, 3-regular 3-XORSAT.
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FIGURE 4a,b shows the time-to-solution metric for
the MaxCut and SK models. The best-performing
methods for the SK model use classical digital hardware,
for which RBMs and Toshiba bifurcation machines
(TBMs) show the lowest time to solution. For the MaxCut
problem, RBMs achieve the lowest time-to-solution for
a physically implemented machine. We note that the
memristor annealing (MRT), photonic recurrent Ising
sampler (PRIS) and coherent Ising machine (CIM3)
curves involve theoretical prediction of the time-to-
solution, rather than a direct measurement of the
time. Most of the curves follow the phenomenological
scaling relation

JN

c
TsolO(e .

(11)
where ¢ is a constant. However, if the range of available
data is too small, the square-root behaviour may not yet
be visible. The D-Wave results are better approximated
by an exponential relation T, e which requires ocN?
physical qubits, owing to the limited chimera connec-
tivities of the qubits. One should note that the D-Wave
results arise from a hardware implementation limita-
tion that gives a different scaling and not the compu-
tational mechanism itself, and may be improved in the
future**-*". For problem instances with sparse connec-
tivity, the scaling of D-Wave was improved'”. These
results show that the connectivity is an important factor
that determines the performance of an Ising machine
— TABLE | gives the hardware connectivity of different
Ising machines.

In FIC. 4c, we show results from REF>*®, which com-
pare Ising machines for 3R3X problems. These prob-
lems have a golf-course energy landscape structure
with known exact solutions. This class of problem can
be solved in polynomial time using Gaussian elimina-
tion, but scales exponentially for general solvers such as
quantum annealers*”. The best-performing approach in
this case is the SATonGPU approach, which is a highly
parallelized version of a SAT algorithm implemented
on a GPU. The Fujitsu Digital annealer and Toshiba
bifurcation machine achieve similar scaling, but have
a larger prefactor than the SATonGPU approach. The
memcomputing results are based on classical simula-
tion of a proposed system, hence dedicated hardware
might result in some performance improvement*”.
Although there are fewer studies performed for this
problem class, these results again suggest that the
best-performing solvers today are based on digital
computing hardware.

To show the potential of quantum approaches, we
also discuss additional problem classes for which it is
expected that QA has advantages over a class of clas-
sical methods'’~"** despite the above-mentioned limi-
tations of D-Wave. FICURE 4d compares the optimum
time-to-solution for the class of logical-planted (LP)
problems that are constructed such that they promote
the presence of tunnelling barriers. For these problems,
it is expected that barriers can be traversed more effec-
tively by quantum, rather than thermal fluctuations.
Here, D-Wave and SQA shows a scaling advantage
over SA'.

REVIEWS

The superior performance of SQA implies that tunnel-
ling through barriers may not be considered the exclusive
advantage of quantum hardware. However, one should
note that SQA cannot be applied for non-stoquastic
Hamiltonians that have a sign problem, and as such the
power of QA for non-stoquastic Hamiltonians requires
further exploration. Non-stoquastic Hamiltonians
are important from a computational complexity per-
spective because adiabatic quantum computation with
non-stoquastic Hamiltonians is equivalent to the cir-
cuit model of quantum computing’'’. Therefore, they
can simulate other universal models with a resource
overhead that is, at worst, polynomial. The fact that
D-Wave outperforms SA confirms the presence and
advantage of quantumness, but the superior perfor-
mance of SQA suggests that current QA hardware is
still dominated by classical dynamics and needs to
be improved. We note that for the LP problem class,
there are classical algorithms that outperform or have
comparable performance with D-Wave'¥’. A sepa-
rate study?'' compared D-Wave with classical heu-
ristic algorithms for another class of specially crafted
problem, called the deceptive cluster loop problem
(FIC. 4d). For this problem class, D-Wave outperforms
the best-known heuristic algorithms, such as paral-
lel tempering Monte Carlo with isoenergetic cluster
moves (PT+ICM) and Hamze-de Freitas-Selby (HES),
with approximately two orders of magnitude shorter
time to solution. However, no scaling improvement
is evident.

Numerous other benchmarking studies of Ising
machines have been performed-l‘),‘i&()'{ll‘),142,169,13(),182,134,212.
For example, in REF?"?, the performance of the D-Wave
hybrid solver, TBM, FDA and SA was benchmarked for
three different classes of problem instances including SK.
The results highlight the fact that the performance of
machines is problem-dependent. In particular, for the
SK model, TBM showed the best performance. In REF'%,
the performance of QAOA was benchmarked on SK and
MaxCut problems for problems up to 23 qubits.

Outlook

Comparing the performance of Ising machines, most
approaches tend to have similar scalings in terms of the
error probability and the time-to-solution metrics as a
function of the number of spins, despite the different
approaches and technologies used to realize them. The
complexity of all approaches scales exponentially with
the system size, with the difference being the power
within the exponent and the prefactors. This scaling is
expected given the NP-complete complexity of the Ising
problem — the battle between competing approaches is
with respect to the exponents that are achievable. A small
difference in the exponent makes a large difference in
time-to-solution for large system sizes.

Although FIGS 3 and 4 suggest that classical digital
methods are still the best-performing approaches at
the time of writing, analogue and quantum computing
technologies are rapidly developing, and the technol-
ogy landscape may undergo a revolution. Some of the
best-performing approaches are based on classical dig-
ital technology, which have had the benefit of decades
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